## Appendix A

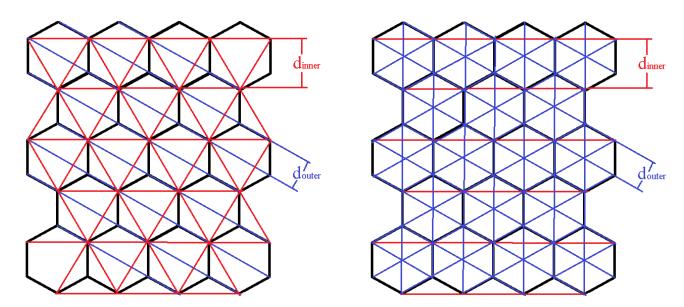



Figure 4: This is an exaggeration of the hexagonal crystalline structure of carbon in the graphite form. The red lines represent one diffraction grating and the blue represent the other. There are many orientations that yield the two distances in an organized pattern. The left shows the multiple orientations for diffraction leading to the inner ring. The right shows the patterns leading to the outer ring.

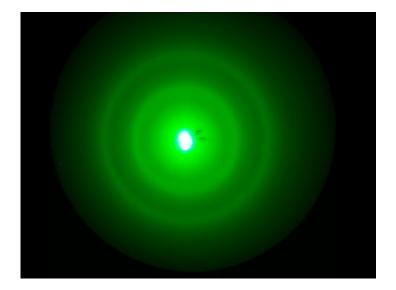



Figure 5: This is a photograph taken of the diffraction pattern during the experiment. The unobstructed electron beam is much brighter than the rings outside. Note the two distinct rings corresponding to two separate distances between carbon atoms in the graphite structure.

## Appendix B

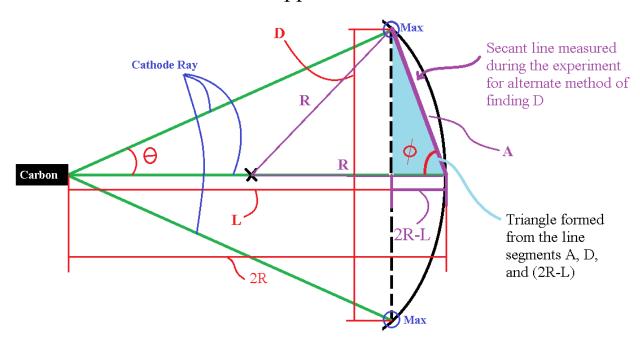



Figure 6: This is a more detailed version of Figure 1. The purple line, A, is the secant line measured from the unobstructed wave at the center, to the diffraction maximum. Using trigonometry, we can find the leg of the triangle equal to half the distance D.

Letting *R* be the radius of the electron diffraction tube and *A* be the measured secant line, the law of cosines can be rearranged to

$$\phi = \cos^{-1}\left(\frac{A}{2R}\right) \tag{12}$$

With  $\phi$ , we can find an expression for D in terms of A such that

$$D = 2A\sin\phi \tag{13}$$

Substituting equation (12) for  $\phi$  in equation (13), we find our alternative method for finding D

$$D = 2A \sin\left(\cos^{-1}\left(\frac{A}{2R}\right)\right) \tag{14}$$

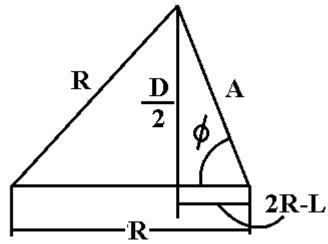



Figure 7: A diagram of the purple triangle found in Figure 6. The radius, R, is a known value and A is measured.

## Appendix C

| Diameter Method |             |         |         |  |
|-----------------|-------------|---------|---------|--|
|                 |             | D Inner | D Outer |  |
| V               | V^(-1/2)    | (mm)    | (mm)    |  |
| 1745.119        | 0.023937979 | 40.46   | 68.03   |  |
| 2105.48         | 0.021793372 | 38.48   | 64.58   |  |
| 2429.4          | 0.020288526 | 35.89   | 58.31   |  |
| 2781.663        | 0.018960411 | 33.30   | 55.86   |  |
| 3044.848        | 0.018122462 | 32.72   | 53.20   |  |
| 3376.866        | 0.017208503 | 31.56   | 50.46   |  |
| 3729.129        | 0.016375565 | 30.64   | 49.82   |  |
| 4036.853        | 0.015739051 | 28.49   | 48.13   |  |
| 4376.969        | 0.015115178 | 27.10   | 45.40   |  |
| 4640.154        | 0.014680262 | 26.99   | 44.57   |  |
| 4939.78         | 0.014228077 | 26.98   | 43.31   |  |

Table 1: This is a table of the data collected by the diameter method. The values for D inner, and D outer were measured directly.

| Secant Method |             |         |         |  |
|---------------|-------------|---------|---------|--|
|               |             | D Inner | D Outer |  |
| V             | V^(-1/2)    | (mm)    | (mm)    |  |
| 1745.119      | 0.023937979 | 40.46   | 68.03   |  |
| 2105.48       | 0.021793372 | 38.48   | 64.58   |  |
| 2429.4        | 0.020288526 | 35.89   | 58.31   |  |
| 2781.663      | 0.018960411 | 33.30   | 55.86   |  |
| 3044.848      | 0.018122462 | 32.72   | 53.20   |  |
| 3376.866      | 0.017208503 | 31.56   | 50.46   |  |
| 3729.129      | 0.016375565 | 30.64   | 49.82   |  |
| 4036.853      | 0.015739051 | 28.49   | 48.13   |  |
| 4376.969      | 0.015115178 | 27.10   | 45.40   |  |
| 4640.154      | 0.014680262 | 26.99   | 44.57   |  |
| 4939.78       | 0.014228077 | 26.98   | 43.31   |  |

Table 2: This is a table of the data collected by the secant method. The values for D inner and D outer are calculated from the secant line in Figure 6

After plotting the data found in Table 1 and Table 2, a linear regression was applied to find the error in the slope,  $\delta m_s$ . This accounted for the error in the graphed values  $V_a^{-1/2}$ ,  $D_{inner}$ , and  $D_{outer}$ . To find the error in the distance between atoms, d, we used the following equation

$$\frac{\delta d}{|d|} = \sqrt{\left(\frac{\delta m_s}{|m_s|}\right)^2 + \left(\frac{\delta L}{|L|}\right)^2 + \left(\frac{\delta h}{|h|}\right)^2 + \left(\frac{\delta m}{|m|}\right)^2 + \left(\frac{\delta e}{|e|}\right)^2} \tag{15}$$

This gave us the fractional uncertainty in the values of d we calculated for each method. To increase the accuracy of our results we used a weighted average.

$$d_{wav} = \frac{\sum w_i d_i}{\sum w_i} \tag{16}$$

Where  $w_i$  is the weight expressed by

$$w_i = \frac{1}{\sigma_i^2} \tag{17}$$

and  $\sigma_i$  is the uncertainty corresponding to each d value.